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The localization of deformation in the vicinity of nonuniformities upon the high-rate 
loading of a porous material can result in the onset of local regions for which large veloc- 
ity gradients, viscous effects, and appreciable heatings are characteristic. The nonequilib- 
rium nature of the heat liberation upon shock compression of porous materials was pointed 
out in [1-3]. Experimental confirmation of the existence of appreciable temperature gradi- 
ents in the vicinity of pores in the case of viscoplastic flow of the material in the course 
of shock-wave loading can be found in [4-6]. A significant dependence of the nonequilibrium 
temperature of the contacts of particles of a porous material on the size of its fraction 
with identical loading conditions and initial density has been shown in [7-10]. A signifi- 
cant effect of the particle size in connection with shock-wave initiation of pressed trinitro- 
toluene on the conditions of formation of sources of local heatings has been discovered in 
[ii, 12]. 

A theoretical approach to the description of the process of variation of porosity upon 
the dynamic loading of a medium has been suggested in [13, 14] on the basis of an investiga- 
tion of the dynamics of deformation of a spherical cell, the ratio between whose inner and 
outer radii characterizes the porosity of the material. Viscoplastic heating of the material 
of a spherical cell in the course of the collapse of a pore has been discussed in [15-17]. 
The variation of the temperature has been obtained in [15] from an analysis of the variation 
of the specific internal energy of the material on the assumption that the thermal relaxation 
time appreciably exceeds the collapse time of the pore. Temperature profiles have been con- 
structed in [16, 17] as a result of the solution of the time-dependent thermal balance equa- 
tion; however, the analysis is limited to small values of the Reynolds number (in the region 
corresponding to smooth compression of the pore to its equilibrium radius). An analysis of 
the nature of energy storage and the effects of melting in the vicinity of nonuniformities 
has been performed in [18] by proceeding from the nature of the internal energy distribution. 

The laws of the collapse of a pore in a viscoplastic material and the dynamics of the 
heating of material in the vicinity of a pore in the course of its collapse are investi- 
gated in this paper. The effect of the back pressure of the gas on the nature of deforma- 
tion of the latter is shown. Relationships are derived which determine the limiting values 
of the maximum possible heating of the material due to viscoplastic dissipative processes. 

We shall consider the process of collapse of a spherical pore acted on by a constant ex- 
ternal pressure p. Let a and b be the instantaneous values of the radii of the pore and the 
spherical cell. The cell material is assumed to be uniform, isotropic, incompressible, and 
to satisfy the relationships of a viscoplastic medium. 

The equations of continuity and motion for the case of central symmetry are written in 
the form 

_ t  (~%) = o; (1)  
Or 

p(Ov/Ot + vOv/O~ = O%lOr + (2/~(% - -  ~e), ( 2 )  

and the determining equation of a viscoplastic material is of the form [17, 18] 

(~ \ - -  % = (~, -t- 2q(av/Or ~ v/r). (3) 
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Heating of the material of the spherical cell upon the collapse of the pore is written 
as a differential thermal conductivity equation in the presence of volume sources of heat 
liberation 

(OT ,OT) ~ 0 ( OT\  v ( v ) ~  
r -~'-4- v-"~r - - r  2 Or r2-~r ) - -  2%--Z'-}- ~2~l - 7  ' (4)  

where t is the time; r, an Eulerian coordinate; v, radial component of the velocity vector; 
o r and ae= a~ , components of the stress tensor; T, temperature; p, %, and c, density, 
thermal conductivity coefficient, and specific heat of the material; Os, dynamic yield 
stress; and q, effective viscosity coefficient. 

The initial and boundary conditions are of the form 

a t  t = 0 r = ro, T(r)  = To, v(r) = O, ( 5 )  

at r = b o r = - -p ,  OT/Or ~- O, 

at r == a c~ r = - -pq ,  OT/Or = O, 

a n d  t h e  l a w  o f  p r e s s u r e  v a r i a t i o n  o f  t h e  g a s  a d i a b a t i c a l l y  c o m p r e s s e d  i n  t h e  p o r e  i s  d e t e r -  

m i n e d  i n  t h e  f o r m  

pq := pqo(ao/a)3?, (6 )  

where pqo is the initial pressure of the gas in the pore and y is the adiabatic index. 

The last two terms on the right-hand side of Eq. (4) reflect the power of heat libera- 
tion due to plastic and viscous energy dissipation, respectively. Equating the temperature 
gradient on the surface of the pore to zero results in a certain understating of the tempera- 
ture, since the effect of heat exchange of the gas compressed in the pore on heating of the 
surface layers of the material has not been taken into account. The dynamics of heating of 
the material upon collapse of the pore will be determined in this case by the competition be- 
tween the processes of heat liberation due to viscoplastic energy dissipation and heat trans- 
fer due to thermal conductivity. 

The integral of Eq. (i) is of the form 

v = ~(ah') ~; (7) 

the dot denotes differentiation with respect to time. 

Substituting the last expression and the derivatives 3v/3t and 3v/3r into Eq. (2) and 
also using (3), (5)-(7), and the incompressibility condition r 3 -- a 3 = rao -- a3o (the sub- 
script 0 refers to the initial values of the quantities), one can determine the law of varia- 
tion of the pore radius. 

Let us introduce the dimensionless variables and parameters: 

='(t/ao)(p/p) 1/2, x = a/ao, m~ = ~(p/9)--1/2, ~ = r/ao ' 

m o = (ao/bo) s, k = i / m o - - l ,  z = a/b = (l ~- kx'S) -1 /3 ,  

= ~ s ~  , R e  = a o ( p p ) t ~ / q , q : p q o  ~ ,  Pr =- c~/~, 

O =~cg(T  - -  ~ ) / p .  

Here Re is the Reynolds parameter, Pr is the Prandtl parameter, and mo is a parameter 
which characterizes the initial porosity of the material (the ratio of the specific volume 
of the pore space to the specific volume of the solid material). The parameter 6 character- 
izes the plastic properties of the material, the Reynolds number Re, the viscous properties, 
and the parameter q, the relationship between the applied pressure and the initial pressure 
of the gas in the pore. 

Changing over in (4) to the new variables and taking (7) into account, we obtain 

(8) 

and the variation law of the pore radius x and its velocity war are determined from the solu- 
tion of the following system of differential equations: 

287 



Re_ } . . . . . .  - - - . ~ - ~  .... 

0 O,e 0,4 /9 

Fig. 1 

O+ 

8 

O 

.2\ f 

0,4 0,8 x 

Fig. 2 

[ ]w~+ 4 ( t + Z + z  2) dz dry+ (t -}- z) (t + Z 2) __ 2 w+ 2fi In z - -  qx -a? -5 t "~ = w+. 

d~ -- 2 R e x  ~ - -  x ( i - - z )  ' 

The initial and boundary conditions of the problem are" 

The system of equations (8) and 

(9) 

at * = 0  x = l ,  w + = O ,  O ( ~ ) = o ,  
at ~ = x  o O / O ~ = O ,  

at ~ = xlz o0Io~ = O. 

(10) 

(9) with the initial and boundary conditions (i0) permits de- 
termining the form of the function @(~, ~) for specific values of the parameters mo, 6, Re, 
q, and Pr. 

The characteristics of the collapse of a pore in a viscoplastic material in the absence 
of gas back pressure have been discussed in [19]. It has been shown that the relationship of 
the parameters mo, ~, and Re can lead to collapse of the pore (region I in Fig. i) and its 
smooth compression to an equilibrium radius (region III in Fig. I) or to oscillatory motion 
of the material (region II in Fig. i). In the latter case the radius of the pore in the com- 
pression phase is finite, but less than its equilibrium value. In this case it is necessary 
for the description of the subsequent motion of the medium to take account of the elasto- 
plastic properties of the material. Curves 1 and 2 in Fig. i, which separate the regions 
with different laws of motion of the pore boundary, are determined as a result of the numeri- 
cal integration of the system of equations (9) for q = 0 and mo = 0.05. Curves 3 and 4 are 
obtained with gas back pressure present in the pore for q = 10 -4 and 10 -2 (y = 1.4) and in- 
dicate a narrowing of the region of asymptotic compression of the pore to the equilibrium 
radius as the parameter q increases; the dashed line bounds the region of values of ~ corre- 
sponding to a state of total plasticity of the cell material: 

~ ~m ~ --3(1 -- q)/(21n mo). 

In the limiting case with Re ~ 1 and neglecting the inertial terms in the first equa- 
tion of the system (9), one can determine the explicit form of the dependence w+(x): 

Re 2 ('ii) 
(k X + x 8 ) [ + qx -3~ _ ~]. L-g ~ In (~ + k. -3) w+ --  4k 

The law of motion of the pore boundary is determined from (ii) in quadratures by the ex- 
pression 

i dx' x =  w+(x')"  

1 

With q = 0 the expression for T is reduced to the form 
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2 [ t + (2/3) ~ In m 0 ] 
~ : ~R--~ln u l _ i 2 - ~  ~-]-n-~ 7 ~x_a) ]. (12) 

L e t  us  d e t e r m i n e  t h e  v a l u e  o f  t h e  maximum p o s s i b l e  h e a t i n g  0+, n e g l e c t i n g  h e a t - t r a n s f e r  
p r o c e s s e s  (~ = 0 ) ,  which  c o r r e s p o n d s  to  t h e  c o n d i t i o n  P r  § - .  T a k i n g  the  b o u n d a r y  c o n d i t i o n  
(i0) at $ = x into account, and switching from the variable T to the variable x [in view 
of the fact that the function x(~) is monotonic in the pore compression phase], we obtain 
from (8) an integral equation for 0+ 

x r 
i2 (.w+ (x ) 

O+ = --2~ln x +  ~ -  | - - -TY- dx'. (13) 
d x 
1 

The f i r s t  t e r m  on t h e  r i g h t - h a n d  s i d e  of  Eq. (13) c h a r a c t e r i z e s  t h e  h e a t i n g  a s s o c i a t e d  
w i t h  p l a s t i c  d e f o r m a t i o n s  o f  t h e  m a t e r i a l ,  and t h e  second  one c h a r a c t e r i z e s  t he  v i s c o u s  d i s -  
s i p a t i v e  heating. 

As Re + ~ (a rigid plastic medium), the maximum dimensionless temperature @+ = --2~ In x. 
As x § 0, the function @+(x) has a logarithmic singularity. The indeterminacy of the tempera- 
ture in the vicinity of the pore produced by plastic deformations can be eliminated if one 
takes into account that at the melting temperature changes the material into the liquid state 
with 8 = 0 (o s = 0). 

In the other limiting case Re << i, substituting the relationship (Ii) into Eq. (13) and 
integrating, we obtain 

Ix ~ (1 -v) - I  z - 8 ~ - 1 ]  l - - x  3 26 
O + = - - 2 ~ l n x + q [  ~ : ~  ? + - - T - -  -- 3 h' z q - - ~  • (14) 

=r r3 

X[(~+~3) ln(a.+z3)--(k+Oln (I~+1)]--~n~ 3mz+- -g~  ~ + 
1 

The l a s t  i n t e g r a l  a f t e r  e x p a n s i o n  of  t h e  i n t e g r a n d  i n t o  a s e r i e s  has  t he  s o l u t i o n  

n 

I ( x ) = 3 1 n k l n x - - ' ~ (  t) 'z (z3z- t) 
1 = 1  

With small values of the initial porosity k >> 1 and (x ~Z -- i) << --i (Z = I, 2, ..., n), 
in accordance with which we obtain 

I(x) = 3 I n k  in z - -  (l --  x3)/k. 

With the last relationship taken into account we obtain after substitution into 
@+ the expression 

[~(1-V)_l x - 3 v - l ]  1 - - 3  
- o + = - 2 ~ l n x @ q k ' ~  . ? j @ - - - f f - - - - 3 1 n x @  

(14) for 

(15) 

@(2~/3~[(k@x 3) l n ( k + x  z ) - ( k @ i ) l n ( k @ t ) - ( l - x 3 ) ]  @~lnx(21nk--31nx--2x3/k) .  

I t  f o l l o w s  f rom Eq. (15) t h a t ,  i n  t h e  r e g i o n  of  a s y m p t o t i c  c o m p r e s s i o n  o f  t he  p o r e  to  
t he  e q u i l i b r i u m  r a d i u s  t h e  maximum p o s s i b l e  t e m p e r a t u r e  0+ a t t a i n a b l e  due to  v i s c o p l a s t i c  
e n e r g y  d i s s i p a t i o n  does  n o t  depend  on t h e  p a r a m e t e r  Re. 

To i l l u s t r a t e  t he  r e s u l t s  o b t a i n e d ,  t h e  d e p e n d e n c e  o f  t h e  d i m e n s i o n l e s s  t e m p e r a t u r e  O,  
on t h e  c o o r d i n a t e  o f  t he  p o r e  b o u n d a r y  x o b t a i n e d  f rom the  s o l u t i o n  o f  the  s y s t e m  o f  e q u a t i o n s  
(9) and ( 1 3 ) i s  g i v e n  i n  F i g .  2. The c u r v e s  c o r r e s p o n d  to  the  f o l l o w i n g  p a r a m e t e r s :  me = 
0 . 0 5 ,  8 = 0 . 1 ,  q = 10 -4  , and y = 1 . 4 .  The R e y n o l d s  p a r a m e t e r  was t a k e n  e q u a l  t o  8, 6,  and 
( c u r v e s  1 - 3 ,  r e s p e c t i v e l y ) .  Curve 4 i s  c a l c u l a t e d  i n  p c c o r d a n c e  w i t h  (15) and i s  t h e  l •  
i n g  c u r v e  f o r  s m a l l  v a l u e s  o f  t h e  p a r a m e t e r  Re ( f o r  Re << 1 ) .  I n c r e a s i n g  t h e  Reyno ld s  p a r a m -  
e t e r  leads to a change in the nature of the increase of 0+; in the initial stages of the pore 
collapse process the heating is inappreciable, and in the final stage a sharp increase of the 
dimensionless temperature is observed. At the same time, for small Re (curve 4), the heating 
is significant already in the initial stages of the process. The results obtained are valid 
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up to values of the temperatures not exceeding the melting temperature of the material and 
permit determining the conditions of formation of the molten zones in the vicinity of the 
pore as a function of the shock-loading parameters of the porous material. 

The extent of the effect of heat transfer on the value of 8+ is determined by the rela- 
tionship between the thermal relaxation time t K ~ a2o/K (~ is the therma$ diffusivity of the 
material) and the characteristic collapse time of the pore t~ ~ ao(p/p) I/2. Equality of the 
quantities in question leads to the critical condition Pr Re ~ i, which permits separating 
the regimes with a significant and an inappreciable effect of heat transfer on the dynamics 
of heating of the material in the vicinity of the pore upon its collapse. In the region of 
parameter values Pr Re >> I, the effect of heat transfer cannot be taken into account, and the 
dimensionless temperature O+will be determined by Eq. (13). In the opposite case, with 
Pr Re << i, the maximum value of @+will depend on the relationship between the rate of heat 
liberation due to dissipative processes and the heat transfer rate due to thermal conductivity. 

In the region of small values of the Reynolds number (Re << i) the compression time of 
the pore to the equilibrium radius differs in order of magnitude from tq by a factor deter- 
mined by the right-hand side of the expression (12) and appreciably exceeding unity. Taking 
this fact into account, one can show that with Pr Re << 1 the heat transfer rate can exceed 
the heat liberation rate already in the initial stage of the pore collapse process, due to 
which the material in its vicinity will be practically unheated. 

The critical value of the pore radius, which determines the boundary between regimes 
with a different effect of heat transfer on the dynamics of heating of the surface layers of 
the material, has the form a*o = K(0/p) I/2, and the levels of the loading pressures should 
exceed the value Pm = --(2/3)~s In mo + pqo, which characterizes the condition of the transi- 
tion of the material to the plastic state. When ao >> a*o, the effect of heat transfer due 
to thermal conductivity on the heating of material in the vicinity of a pore is unimportant. 
For the majority of metals 0 = 104 kg/m 3 and < = 10-s-10 -4 m2/sec. In the pressure region 
p = i-i0 GPa, the critical radius is a*o = i0-0.i ~m, and it agrees in order of magnitude 
with the experimental results [3, 7-10]. As the pressure increases, the critical value of 
the pore radius decreases, which results in a decrease of the dependence of the temperature 
of the surface layers of the material on the initial pore radius. Similar regularities have 
been noted in [8], in which it is shown that the dependence of the nonequilibrium temperature 
in powders of copper and nickel on the value of the particle fraction is a maximum at p = 3 
GPa, and a further increase in the pressure leads to a weakening of it. 

Thus the analysis performed indicates the possibility of the onset of significant tem- 
perature gradients in the vicinity of a pore upon its collapse which are caused by visco- 
plastic dissipative processes. 
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A DYNAMIC MODEL OF A THERMOELASTIC CONTINUOUS MEDIUM 

WITH PRESSURE RELAXATION 

A. M. Iskol'dskii and E. I. Romenskii UDC 531;621.316 

The dynamics of the pulsed heating of a metal to submelting temperatures by an electric 
current was analyzed in [i] on the basis of the Maxwellian model of a nonlinearly elastic 
medium with relaxation of shear stresses [2]. A number of experimental relationships which 
seemed anomalous within the framework of simplified models were explained in this case. In 
[i] it was assumed that bulk deformations take place elastically. 

In the present work a model with relaxation of bulk deformations in a liquid (shear 
stresses are ignored) is formulated which allows one to give a natural interpretation of an 
electrical explosion as a phenomenon arising when the level of specific energy content of the 
medium is inexplicably high. In particular, when a copper conductor is heated in an electric 
circuit providing a rate of temperature rise dT/dt = 1.5.10 ~~ deg/sec, the starting point of 
the electrical explosion comes at an energy Q, = 3.2 kJ/g (T = 6000~ whereas under equilib- 
rium conditions (p = 1013 hPa) boiling starts at Qboil = 1.35 kJ/g (T = 2900~ 

Such a result cannot be explained within the framework of the theory of metastable 
states (the Zel'dovich--Fol'mer theory Qf nucleation, in particular; also see [3]) if plaus- 
ible estimates are used for the work of formation of the critical nucleus and for the value 
of the preexponent in the universal expression for the flux of nuclei in the region Of sizes 
larger than the critical size. 

Allowance for bulk relaxation also seems a necessary expansion of the model with shear 
relaxation for the region of lower (submelting) temperatures. 
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